Cross-modal Attribute Transfer for Rescaling 3D Models
نویسندگان
چکیده
We present an algorithm for transferring physical attributes between webpages and 3D shapes. We crawl product catalogues and other webpages with structured metadata containing physical attributes such as dimensions and weights. Then we transfer physical attributes between shapes and real-world objects using a joint embedding of images and 3D shapes and a view-based weighting and aspect ratio filtering scheme for instance-level linking of 3D models and real-world counterpart objects. We evaluate our approach on a large-scale dataset of unscaled 3D models, and show that we outperform prior work on rescaling 3D models that considers only category-level size priors.
منابع مشابه
Attribute-Guided Network for Cross-Modal Zero-Shot Hashing
Zero-Shot Hashing aims at learning a hashing model that is trained only by instances from seen categories but can generate well to those of unseen categories. Typically, it is achieved by utilizing a semantic embedding space to transfer knowledge from seen domain to unseen domain. Existing efforts mainly focus on single-modal retrieval task, especially Image-Based Image Retrieval (IBIR). Howeve...
متن کاملMHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal Retrieval
Cross-modal retrieval has drawn wide interest for retrieval across different modalities of data (such as text, image, video, audio and 3D model). However, existing methods based on deep neural network (DNN) often face the challenge of insufficient cross-modal training data, which limits the training effectiveness and easily leads to overfitting. Transfer learning is usually adopted for relievin...
متن کاملCross-modal Common Representation Learning by Hybrid Transfer Network
DNN-based cross-modal retrieval is a research hotspot to retrieve across different modalities as image and text, but existing methods often face the challenge of insufficient cross-modal training data. In single-modal scenario, similar problem is usually relieved by transferring knowledge from largescale auxiliary datasets (as ImageNet). Knowledge from such single-modal datasets is also very us...
متن کاملNumerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids
This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...
متن کاملBayesian non-parametrics for multi-modal segmentation
Segmentation is a fundamental and core problem in computer vision research which has applications in many tasks, such as object recognition, content-based image retrieval, and semantic labelling. To partition the data into groups coherent in one or more characteristics such as semantic classes, is often a first step towards understanding the content of data. As information in the real world is ...
متن کامل